Breadth-First Search
Posted by Dustin Boston in Algorithms.
Breadth-First Search is an algorithm for searching graph data structures. It starts at a specified source node and explores all its immediate neighbors before moving on to the next level of neighbors.
Source Code Listing
code.ts
/**
* @file Breadth-First Search
* @author Dustin Boston
* @see Cormen, T, Leiserson, C, Rivest, R, and Stein, C. (2001).
* Introduction to Algorithms. (2nd ed). The MIT Press.
*/
/**
* Represents the possible states that can be assigned to vertices while
* traversing the graph.
*/
export enum Color {
/** Vertex has not been visited. */
White = 0,
/** Vertex is being visited */
Gray = 1,
/** Vertex has been fully visited */
Black = 2,
}
/** Represents a node in a Directed Acyclic Graph (DAG). */
export class Vertex<T> {
/** An array of vertices connected to this vertex. */
adjacent: Array<Vertex<T>> = [];
/** The parent vertex in a traversal of the graph. */
parent?: Vertex<T> = undefined;
/** Steps away from the starting vertex in a graph traversal. */
distance = Infinity;
/** State of the vertex in a traversal. */
color: Color = Color.White;
/** @param value The value of the vertex. */
constructor(public value: T) {}
}
/**
* Performs a breadth-first search (BFS) on a graph starting from a given
* vertex. Initializes all vertices as unvisited and then processes them level
* by level.
*
* @param graph An array of all vertices in the graph.
* @param search The starting vertex for the BFS.
*/
export function bfs<T>(graph: Array<Vertex<T>>, search: Vertex<T>) {
for (const vertex of graph) {
vertex.color = Color.White;
vertex.distance = Infinity;
vertex.parent = undefined;
}
search.color = Color.Gray;
search.distance = 0;
search.parent = undefined;
const queue = [search];
while (queue.length > 0) {
const vertex: Vertex<T> | undefined = queue.shift();
if (!vertex) {
break;
}
for (const adjacentVertex of vertex.adjacent ?? []) {
if (adjacentVertex.color === Color.White) {
adjacentVertex.color = Color.Gray;
adjacentVertex.distance = vertex.distance + 1;
adjacentVertex.parent = vertex;
queue.push(adjacentVertex);
}
}
vertex.color = Color.Black;
}
}
/**
* Prints the path from the search start vertex to a specific vertex
* recursively. If no path exists, it outputs an appropriate message.
*
* @param graph The graph containing all vertices.
* @param search The starting vertex of the search.
* @param vertex The target vertex to which the path is to be printed.
*/
export function printPath<T>(
graph: Array<Vertex<T>>,
search: Vertex<T>,
vertex: Vertex<T>,
): string | undefined {
const path: Array<string | undefined> = [];
function trace<T>(search: Vertex<T>, vertex: Vertex<T>) {
if (vertex === search) {
path.push(String(search.value));
} else if (vertex.parent === undefined) {
// No path exists
} else {
trace(search, vertex.parent);
path.push(String(vertex.value));
}
}
trace(search, vertex);
return path.join(" -> ");
}
test.ts
import {expect, test, describe} from "bun:test";
import {bfs, printPath, Vertex, Color} from "./code.ts";
describe("Breadth-First Search", () => {
test("Single Node", () => {
const vertex = new Vertex("A");
bfs([vertex], vertex);
expect(vertex.color).toBe(Color.Black);
expect(vertex.distance).toBe(0);
});
test("Linear Graph", () => {
const vertA = new Vertex("A");
const vertB = new Vertex("B");
const vertC = new Vertex("C");
vertA.adjacent.push(vertB);
vertB.adjacent.push(vertC);
bfs([vertA, vertB, vertC], vertA);
expect(vertA.distance).toBe(0);
expect(vertB.distance).toBe(1);
expect(vertC.distance).toBe(2);
expect(vertC.color).toBe(Color.Black);
});
test("Disconnected Graph", () => {
const vertA = new Vertex("A");
const vertB = new Vertex("B");
const vertC = new Vertex("C"); // Disconnected vertex
bfs([vertA, vertB, vertC], vertA);
expect(vertA.color).toBe(Color.Black);
expect(vertC.distance).toBe(Infinity);
expect(vertC.color).toBe(Color.White);
});
test("Cyclic Graph", () => {
const vertA = new Vertex("A");
const vertB = new Vertex("B");
const vertC = new Vertex("C");
vertA.adjacent.push(vertB);
vertB.adjacent.push(vertC);
vertC.adjacent.push(vertA); // Creating a cycle
bfs([vertA, vertB, vertC], vertA);
expect(vertA.color).toBe(Color.Black);
expect(vertB.color).toBe(Color.Black);
expect(vertC.color).toBe(Color.Black);
expect(vertC.distance).toBe(2);
});
test("No Path Exists", () => {
const vertA = new Vertex("A");
const vertB = new Vertex("B");
const vertC = new Vertex("C"); // No connection to A or B
bfs([vertA, vertB], vertA);
const result = printPath([vertA, vertB, vertC], vertA, vertC);
expect(result).toBe("");
});
test("Path Exists in Linear Graph", () => {
const vertA = new Vertex("A");
const vertB = new Vertex("B");
const vertC = new Vertex("C");
vertA.adjacent.push(vertB);
vertB.adjacent.push(vertC);
bfs([vertA, vertB, vertC], vertA);
const actual = printPath([vertA, vertB, vertC], vertA, vertC);
expect(actual).toBe("A -> B -> C");
});
test("Path Exists in Cyclic Graph", () => {
const vertA = new Vertex("A");
const vertB = new Vertex("B");
const vertC = new Vertex("C");
vertA.adjacent.push(vertB);
vertB.adjacent.push(vertC);
vertC.adjacent.push(vertA); // Creating a cycle
bfs([vertA, vertB, vertC], vertA);
const result = printPath([vertA, vertB, vertC], vertA, vertC);
expect(result).toBe("A -> B -> C");
});
});