Finite Automata
Posted by Dustin Boston in Algorithms.
A finite automata algorithm is a step-by-step method used to check if a sequence of symbols (like letters or numbers) matches a specific pattern. It works by moving through a series of states based on the input, starting from an initial state and possibly ending in a state that signals a match.
Source Code Listing
code.ts
/**
* @file Finite Automata
* @author Dustin Boston
* @see Cormen, T, Leiserson, C, Rivest, R, and Stein, C. (2001).
* Introduction to Algorithms. (2nd ed). The MIT Press.
*/
/**
* Generator function that matches a pattern using a finite automaton. It
* reports every occurrence of the pattern by yielding the starting index of
* each match.
*
* @param T The text in which to search for the pattern.
* @param d The transition function that defines state transitions based on
* current state and the current character.
* @param m The length of the pattern which corresponds to the acceptance state
* in the finite automaton.
* @yields The starting index of each pattern occurrence in the text.
*/
export function* finiteAutomatonMatcher(
T: string,
d: (q: number, a: string) => number,
m: number,
): Generator<number> {
const n = T.length;
let q = 0;
for (let i = 0; i < n; i++) {
q = d(q, T[i]);
if (q === m) {
console.log(`Pattern occurs with shift ${i - m + 1}`);
yield i - m + 1;
}
}
}
/**
* Constructs a transition function for a given pattern and alphabet. The
* function maps each state and input character to a new state.
*
* @param pattern The pattern for which the transition function is constructed.
* @param alphabet The set of characters considered in the text and pattern.
* @returns A function that takes a state and char and returns the next state.
*/
export function computeTransitionFunction(
pattern: string,
alphabet: string,
): (q: number, a: string) => number {
const m = pattern.length;
const transitionTable: Record<number, Record<string, number>> = {};
for (let q = 0; q <= m; q++) {
transitionTable[q] = {};
for (const a of alphabet) {
let k = Math.min(m, q + 1);
while (k > 0) {
const suffix = pattern.slice(0, q) + a;
const candidate = pattern.slice(0, k);
if (suffix.endsWith(candidate)) break;
k -= 1;
}
transitionTable[q][a] = k;
}
}
return (q: number, a: string) => transitionTable[q][a];
}
// Usage
(() => {
// Compute Transition Function
const pattern = "ababaca";
const alphabet = "abc";
const suffixFunction = computeTransitionFunction(pattern, alphabet);
const expected: Array<Record<string, number>> = [
{a: 1, b: 0, c: 0},
{a: 1, b: 2, c: 0},
{a: 3, b: 0, c: 0},
{a: 1, b: 4, c: 0},
{a: 5, b: 0, c: 0},
{a: 1, b: 4, c: 6},
{a: 7, b: 0, c: 0},
{a: 1, b: 2, c: 0},
];
for (const [i, element] of expected.entries()) {
const actualA = suffixFunction(i, "a");
const expectedA = element.a;
if (actualA !== expectedA) {
throw new Error(`Expected ${expectedA} but got ${actualA}`);
}
const actualB = suffixFunction(i, "b");
const expectedB = element.b;
if (actualB !== expectedB) {
throw new Error(`Expected ${expectedB} but got ${actualB}`);
}
const actualC = suffixFunction(i, "c");
const expectedC = element.c;
if (actualC !== expectedC) {
throw new Error(`Expected ${expectedC} but got ${actualC}`);
}
}
// Finite Automaton Matcher
const iterator = finiteAutomatonMatcher(
pattern,
suffixFunction,
pattern.length,
);
const actualMatches = Array.from(iterator);
const expectedMatchCount = 1;
if (actualMatches.length !== expectedMatchCount) {
throw new Error(
`Expected ${expectedMatchCount} matches but got ${actualMatches.length}`,
);
}
})();
test.ts