Heapsort
Posted by Dustin Boston .
A sorting technique that uses a binary heap, first building a max-heap and then repeatedly extracting the maximum element, ensuring efficient sorting.
Source Code Listing
code.ts
/**
* @file Finite Automata
* @author Dustin Boston
* @see Cormen, T, Leiserson, C, Rivest, R, and Stein, C. (2001).
* Introduction to Algorithms. (2nd ed). The MIT Press.
* @see Computer Science and Artificial Intelligence Laboratory, MIT.
* {@link Heap Algorithms|https://courses.csail.mit.edu/6.006/fall10/handouts/recitation10-8.pdf}
*/
export class Heap {
constructor(
public heap: number[],
public heapSize = 0,
) {}
get length() {
return this.heap.length;
}
toString() {
return this.heap.toString();
}
}
/**
* Computes the parent index for a given index in a heap.
*
* @param parentIndex - The current index in the heap.
* @returns The parent index or undefined if the given index is the root.
*/
export function computeParentIndex(parentIndex: number): number | undefined {
if (parentIndex === 1) {
return undefined;
}
return Math.floor(parentIndex / 2);
}
/**
* Computes the left child index for a given index in a heap.
*
* @param heapArray - The heap array.
* @param currentIndex - The current index in the heap.
* @returns The left child index or undefined if no left child exists.
*/
export function computeLeftChildIndex(
heapArray: Heap,
currentIndex: number,
): number | undefined {
if (2 * currentIndex <= heapArray.heapSize) {
return 2 * currentIndex;
}
return undefined;
}
/**
* Computes the right child index for a given index in a heap.
*
* @param heapArray - The heap array.
* @param currentIndex - The current index in the heap.
* @returns The right child index or undefined if no right child exists.
*/
export function computeRightChildIndex(
heapArray: Heap,
currentIndex: number,
): number | undefined {
if (2 * currentIndex + 1 <= heapArray.heapSize) {
return 2 * currentIndex + 1;
}
return undefined;
}
/**
* Swaps two elements in a heap.
*
* @param heapArray - The heap array.
* @param firstElementIndex - The index of the first element.
* @param j - The index of the second element.
*/
export function exchangeHeapElements(
heapArray: Heap,
firstElementIndex: number,
secondElementIndex: number,
): void {
const temporary = heapArray.heap[firstElementIndex];
heapArray.heap[firstElementIndex] = heapArray.heap[secondElementIndex];
heapArray.heap[secondElementIndex] = temporary;
}
/**
* Retrieves the maximum value from the heap.
*
* @param heapArray - The heap array.
* @returns The maximum value at the root of the heap.
*/
export function getHeapMaximum(heapArray: Heap): number {
return heapArray.heap[0];
}
/**
* Extracts and returns the maximum element from the heap, and rebalances the
* heap.
*
* @param heapArray - The heap array.
* @returns The maximum value from the heap.
* @throws If the heap size is less than 1, indicating a heap underflow.
*/
export function heapExtractMax(heapArray: Heap): number {
if (!heapArray.heapSize) throw new Error("Missing heapSize");
if (heapArray.heapSize < 1) {
throw new Error("heap underflow");
}
const max = heapArray.heap[0];
heapArray.heap[0] = heapArray.heap.pop() ?? 0;
heapArray.heapSize--;
maxHeapify(heapArray, 0);
return max;
}
/**
* Increases the key at a given index in the heap and adjusts the heap to
* maintain the heap property.
*
* @param heapArray - The heap array.
* @param indexToIncrease - The index where the key needs to be increased.
* @param newKeyValue - The new key value which should be larger than the
* current key value at index i.
* @throws If the new key is smaller than the current key at index i.
*/
export function heapIncreaseKey(
heapArray: Heap,
indexToIncrease: number,
newKeyValue: number,
): void {
if (newKeyValue < heapArray.heap[indexToIncrease]) {
throw new Error("new key is smaller than current key");
}
heapArray.heap[indexToIncrease] = newKeyValue;
while (
indexToIncrease > 0 &&
heapArray.heap[computeParentIndex(indexToIncrease) ?? 0] <
heapArray.heap[indexToIncrease]
) {
exchangeHeapElements(
heapArray,
indexToIncrease,
computeParentIndex(indexToIncrease) ?? 0,
);
indexToIncrease = computeParentIndex(indexToIncrease) ?? 0;
}
}
/**
* Inserts a new key into the heap.
*
* @param heapArray - The heap array.
* @param keyToInsert - The key to be inserted into the heap.
*/
export function maxHeapInsert(heapArray: Heap, keyToInsert: number): void {
if (!heapArray.heapSize) throw new Error("Missing heapSize");
heapArray.heapSize++;
heapArray.heap[heapArray.heapSize] = -Infinity;
heapIncreaseKey(heapArray, heapArray.heapSize, keyToInsert);
}
/**
* Maintains the max-heap property by letting a value at a given index "float
* down" in the heap.
*
* @param heapArray - The heap array.
* @param index - Index of the element that might violate the max-heap property.
*/
export function maxHeapify(heapArray: Heap, index: number): void {
const leftChildIndex = computeLeftChildIndex(heapArray, index) ?? 0;
const rightChildIndex = computeRightChildIndex(heapArray, index) ?? 0;
let largest =
leftChildIndex &&
leftChildIndex <= heapArray.heapSize &&
heapArray.heap[leftChildIndex] > heapArray.heap[index]
? leftChildIndex
: index;
if (
rightChildIndex &&
rightChildIndex <= heapArray.heapSize &&
heapArray.heap[rightChildIndex] > heapArray.heap[largest]
) {
largest = rightChildIndex;
}
if (largest !== index) {
exchangeHeapElements(heapArray, index, largest);
maxHeapify(heapArray, largest);
}
}
/**
* Builds a max-heap from an unsorted array.
*
* @param heapArray - The heap array to be transformed into a max-heap.
*/
export function buildMaxHeap(heapArray: Heap): void {
heapArray.heapSize = heapArray.length - 1;
for (let i = Math.floor(heapArray.heapSize / 2); i >= 0; i--) {
maxHeapify(heapArray, i);
}
}
/**
* Performs heapsort on an array, sorting it in place.
*
* @param heapArray - The array to be sorted using the heap sort algorithm.
*/
export function heapsort(heapArray: Heap): void {
buildMaxHeap(heapArray);
for (let i = heapArray.length - 1; i > 0; i--) {
exchangeHeapElements(heapArray, 0, i);
if (heapArray.heapSize) heapArray.heapSize--;
maxHeapify(heapArray, 0);
}
}
// Usage
(() => {
const assertEquals = (a: any, b: any) => {
if (a !== b) {
throw new Error(`Expected ${b} but got ${a}`);
}
};
// Sort
const heapArray1 = new Heap([4, 1, 3, 2, 16, 9, 10, 14, 8, 7]);
heapsort(heapArray1);
assertEquals(heapArray1.toString(), "1,2,3,4,7,8,9,10,14,16");
// Build Max Heap
const heapArray2 = new Heap([4, 1, 3, 2, 16, 9, 10, 14, 8, 7]);
buildMaxHeap(heapArray2);
assertEquals(heapArray2.toString(), "16,14,9,10,8,1,4,2,3,7");
assertEquals(getHeapMaximum(heapArray2), 16);
// Heap Extract Max
const heapArray3 = new Heap([4, 1, 3, 2, 16, 9, 10, 14, 8, 7]);
buildMaxHeap(heapArray3);
assertEquals(heapExtractMax(heapArray3), 16);
assertEquals(heapExtractMax(heapArray3), 14);
assertEquals(heapExtractMax(heapArray3), 10);
assertEquals(heapExtractMax(heapArray3), 9);
assertEquals(heapExtractMax(heapArray3), 8);
assertEquals(heapExtractMax(heapArray3), 7);
assertEquals(heapExtractMax(heapArray3), 4);
// Heap Increase Key
const heapArray4 = new Heap([4, 1, 3, 2, 16, 9, 10, 14, 8, 7]);
buildMaxHeap(heapArray4);
heapIncreaseKey(heapArray4, 6, 15);
assertEquals(heapArray4.toString(), "16,15,9,14,8,1,10,2,3,7");
// Max Heap Insert
const heapArray5 = new Heap([4, 1, 3, 2, 16, 9, 10, 14, 8, 7]);
buildMaxHeap(heapArray5);
maxHeapInsert(heapArray5, 15);
assertEquals(heapArray5.toString(), "16,15,14,10,8,9,4,2,3,7,1");
})();
test.ts