Here Are the Latest CSS Breakpoints You Should Be Using According to Data
Posted by Dustin Boston on in CSS.
Over time we should see a shift in CSS breakpoints due to the evolution of technology. Here are the current stats from Stat Counter, for just the US from Feb 2024 - Feb 2025.
Screen Resolution | Market Share % |
---|---|
1920x1080 | 10.97 |
390x844 | 7.37 |
375x812 | 5.23 |
1366x768 | 4.28 |
1536x864 | 3.85 |
393x852 | 3.57 |
430x932 | 3.36 |
428x926 | 2.78 |
414x896 | 2.65 |
1440x900 | 2.63 |
1280x720 | 2.58 |
1280x960 | 2.32 |
412x915 | 2.23 |
360x800 | 1.83 |
360x780 | 1.79 |
375x667 | 1.66 |
2560x1440 | 1.6 |
810x1080 | 1.47 |
800x600 | 1.39 |
384x832 | 1.31 |
Other | 35.14 |
Now lets calculate the cumulative market share of 80%:
Screen Resolution | Market Share % | Cumulative Market Share |
---|---|---|
1920x1080 | 10.97 | 10.97 |
390x844 | 7.37 | 18.34 |
375x812 | 5.23 | 23.57 |
1366x768 | 4.28 | 27.85 |
1536x864 | 3.85 | 31.7 |
393x852 | 3.57 | 35.27 |
430x932 | 3.36 | 38.63 |
428x926 | 2.78 | 41.41 |
414x896 | 2.65 | 44.06 |
1440x900 | 2.63 | 46.69 |
1280x720 | 2.58 | 49.27 |
1280x960 | 2.32 | 51.59 |
412x915 | 2.23 | 53.82 |
360x800 | 1.83 | 55.65 |
360x780 | 1.79 | 57.44 |
375x667 | 1.66 | 59.1 |
2560x1440 | 1.6 | 60.7 |
810x1080 | 1.47 | 62.17 |
800x600 | 1.39 | 63.56 |
384x832 | 1.31 | 64.87 |
Then we can calculate the mean and the standard deviation using a spreadsheet, which gives us:
- Mean: 3.24
- Standard Deviation: 2.35
- Standard Deviation Threshold: 5.6
To calculate the z-scores, we subtract the Mean from the market share value and divide the result by the Standard Deviation.
Screen Resolution | Market Share % | Z-scores |
---|---|---|
1920x1080 | 10.97 | 3.28 |
390x844 | 7.37 | 1.75 |
375x812 | 5.23 | 0.84 |
1366x768 | 4.28 | 0.44 |
1536x864 | 3.85 | 0.26 |
393x852 | 3.57 | 0.14 |
430x932 | 3.36 | 0.05 |
428x926 | 2.78 | -0.20 |
414x896 | 2.65 | -0.25 |
1440x900 | 2.63 | -0.26 |
1280x720 | 2.58 | -0.28 |
1280x960 | 2.32 | -0.39 |
412x915 | 2.23 | -0.43 |
360x800 | 1.83 | -0.60 |
360x780 | 1.79 | -0.62 |
375x667 | 1.66 | -0.67 |
2560x1440 | 1.6 | -0.70 |
810x1080 | 1.47 | -0.75 |
800x600 | 1.39 | -0.79 |
384x832 | 1.31 | -0.82 |
According to the Z-Scores, only the first value falls outside of the standard ±2. We could also calculate the Inter Quartile Range (IQR) and use that to remove outliers, but the Standard Deviation Threshold will do just fine. The only significant value are 9.08 and 23.08, which are clearly outliers.
So, that didn’t tell us much.
Let’s try clustering with Python and Scikit:
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import pandas as pd
resolutions_str = [
"1920x1080"
"390x844"
"375x812"
"1366x768"
"1536x864"
"393x852"
"430x932"
"428x926"
"414x896"
"1440x900"
"1280x720"
"1280x960"
"412x915"
"360x800"
"360x780"
"375x667"
"2560x1440"
"810x1080"
"800x600"
"384x832"
]
resolutions = []
for res in resolutions_str:
width, height = map(int, res.split("x"))
resolutions.append([width, height])
resolutions_array = np.array(resolutions)
#K-Means clustering
kmeans = KMeans(n_clusters=4) #change number of clusters as needed.
kmeans.fit(resolutions_array)
labels = kmeans.predict(resolutions_array)
#visualization
plt.scatter(resolutions_array[:, 0], resolutions_array[:, 1], c=labels)
plt.xlabel("Width")
plt.ylabel("Height")
plt.title("Resolution Clustering")
#add labels
for i, txt in enumerate(resolutions_str):
plt.annotate(txt, (resolutions_array[i, 0], resolutions_array[i, 1]))
plt.tight_layout()
#plt.show()
# Create and display the DataFrame
df = pd.DataFrame({'Resolution': resolutions_str, 'Cluster': labels})
print(df)
OK, now I can work with this:
Resolution | Cluster | Market Share % |
---|---|---|
390x844 | 0 | 7.73 |
375x812 | 0 | 5.23 |
393x852 | 0 | 3.75 |
430x932 | 0 | 3.36 |
428x926 | 0 | 2.78 |
414x896 | 0 | 2.65 |
412x915 | 0 | 2.23 |
360x800 | 0 | 1.83 |
360x780 | 0 | 1.79 |
375x667 | 0 | 1.66 |
810x1080 | 0 | 1.39 |
800x600 | 0 | 1.39 |
384x832 | 0 | 1.31 |
1366x768 | 1 | 4.28 |
1536x864 | 1 | 3.85 |
1440x900 | 1 | 2.63 |
1280x720 | 1 | 2.58 |
1280x960 | 1 | 2.32 |
2560x1440 | 2 | 1.6 |
1920x1080 | 3 | 10.97 |
We can see that cluster 0 has 37.1% market share, cluster 1 has 15.66%, cluster 2 has 1.6%, and cluster 3 has 10.97%.
Now to get our final breakpoints we take the smallest width from each cluster.
Cluster | Min-width |
---|---|
0 | 360 |
1 | 1280 |
3 | 1920 |
2 | 2560 |
That looks correct, but there’s obviously a huge gap. Lets augment the data further by adding the platform dimension. This time we’ll only consider the widths and we’ll combine market share for widths that are the same. Once we calculate the Standard Deviation Threshold and the Z-Scores we end up with this list:
- 375
- 414
- 768
- 810
- 1280
- 1920
Now that’s something I can work with. Here are the final breakpoints:
body { min-width: 375px; }
/* Taking a mobile-first approach, we'd remove this media query and
let it become our default, like the body, above. */
/* Mobile (iPhone SE size) */
@media (min-width: 375px) {
/* Styles for screens 375px wide and larger */
}
/* Mobile (iPhone Plus sizes) */
@media (min-width: 414px) {
/* Styles for screens 414px wide and larger */
}
/* Tablet (iPad portrait) */
@media (min-width: 768px) {
/* Styles for screens 768px wide and larger */
}
/* Tablet / Small Laptop */
@media (min-width: 810px) {
/* Styles for screens 810px wide and larger */
}
/* Laptop / Desktop */
@media (min-width: 1280px) {
/* Styles for screens 1280px wide and larger */
}
/* Large Desktop / 1080p */
@media (min-width: 1920px) {
/* Styles for screens 1920px wide and larger */
}